

Blood Gases Workshop 2021

Dr Andrew Coggins FACEM

Westmead Hospital Staff Specialist Emergency
Medicine and In-patient Trauma

(Credits LITFL, WICM, Creative Commons)

Background

- Shortness of Breath is a common ED presentation and admission "main complaint"
- Respiratory Failure
 - leading cause of ICU admission
- Septic Shock
 - leading cause of mortality

Agenda - Blood Gases Workshop

Rationale, History, Types of Blood Gas

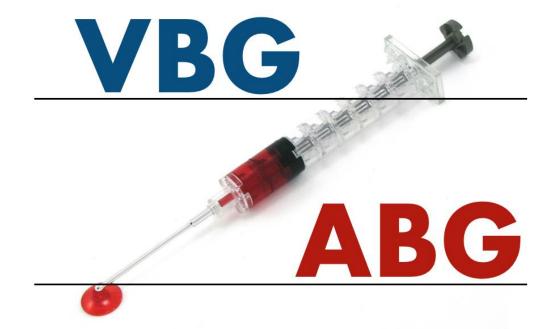
Basic Rules Recap

Advanced Rules


Case Based Learning

Overview

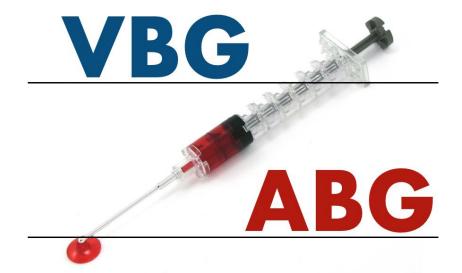
Historical Context



Why take a blood gas?

- Sudden dyspnea
- Cyanosis
- Abnormal breath sounds
- Sudden or unexplained tachypnea
- Heavy use of accessory muscles
- Change in ventilator setting
- CPR
- Diffuse infiltrates in c xray

Contraversy


• What do you think about using a "venous blood gas"?

pH

- Good correlation
- pooled mean difference: +0.035 pH units

pCO2

- Good correlation in normocapnia
- Non-correlative in severe shock
- 100% sensitive in screening for arterial hypercarbia in COPD exacerbation using cut points of PaCO2 45 mmHg (6KPA) and lab testing (McCanny et al, 2012)

Bicarbonate

- Good correlation
- Mean difference -1.41 mmol/L (-5.8 to +5.3 mmol/L 95%CI)

Lactate

- Poor correlations above 2 mmol/L
- Mean difference 0.08 (-0.27 0.42 95%CI)

Base Excess

- Good correlation
- Mean difference 0.089 mmol/L (–0.974 to +0.552 95%CI)

Oxygen

- PO₂ values compare poorly
- arterial PO₂ is typically 36.9 mmHg greater than the venous with significant variability

Clinical Scenarios suited to VBG

- Diabetic Emergencies i.e. DKA, HHS
- Septic Screening
- Monitor (Hyponatraemia, HB monitoring)
- Possibly Trauma
- ?Others
 - When might you use this in your practice?

ABG required if...

- Accurate measurement of PaCO2 in shock
- Accurate measurement of PaCO2 if hypercapnic (i.e. PaCO2 >45 mmHg)
- Accurate Lactate
- PO2 for planning (Electively)
- PO2 acutely is saturations problematic
- Equivocal Cases

AUDIT at our centre - Utilisation of point of care blood gases within 4-hours of ED arrival in trauma patients (ISS≥12)

Recorded blood gas sampling <4h of ED presentation	n/%	30-day Mortality
No ABG or VBG performed	83 (18.2%)	2 (2.4%)
VBG only performed	243 (53.4%)	23 (9.5%)
ABG only performed	63 (13.8%)	9 (14.2%)
ABG and VBG performed	12 (2.6%)	1 (8.3%)
* (ABG and VBG performed)	*54 (11.9%)	4 (7.4%)

OUR TRAUMA DATA (N=176)

Table 2	Comparison of	paired ABG and	venous blood	gas samples ((n=176)
IUDIC Z	Companison of	palica Aba alla	venious bioou (gas sampies ((11—170)

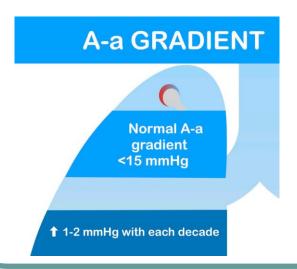
Valid sample		Pearson correlation	Average (arterial and venous)		Arterial minus venous			Limits of agreemen (LOA) ²¹	
Blood gas parameters (variable)	values (n)	between arterial and venous samples	Median	Range	Mean difference (estimated bias)	SD difference	P value (t-test of zero bias)	Lower	Upper
рН	175	0.858	7.36	7.02, 7.59	0.036	0.042	<0.001	-0.048	0.120
Base deficit (mmol/L)	176	0.877	-0.43	-16.5, 5	-1.27	1.54	<0.001	-4.35	1.81
Lactate (mmol/L)	169	0.931	1.90	0.55, 14.7	-0.64	0.61	<0.001	-1.86	0.57
HCO ₃ (mmol/L)	175	0.848	24.5	11, 35	-1.97	1.76	<0.001	-5.49	1.55
Hb (g/dL)	172	0.899	139	88.5, 177	-4.69	7.46	<0.001	-19.61	10.23
Sodium (mmol/L)	169	0.886	139.5	129, 147	-1.08	1.36	< 0.001	-3.80	1.64
Potassium (mmol/L)	170	0.683	3.9	2.9, 6.9	-0.19	0.50	<0.001	-1.19	0.81
lonised calcium (mmol/L)	168	0.833	1.19	0.95, 1.31	0.000	0.030	0.537	-0.060	0.060
Creatinine (µmol/L)	162	0.980	82.5	37, 277	-6.35	5.50	<0.001	-17.35	4.65
Glucose (mmol/L)	172	0.969	7.2	4.3, 31	0.37	0.77	<0.001	-1.17	1.91
PCO ₂ (mm Hg)	175	0.747	44.5	21, 94	-7.59	7.09	<0.001	-21.77	6.59
PO ₂ (mm Hg)	171	0.341	71.9	37.6, 483	116.01	113.79	<0.001	-111.57	343.59
O2 Sats (%)	172	0.133	80.43	53.5, 100	36.74	22.45	<0.001	-8.16	81.64

PCO₂, partial pressure of carbon dioxide; PO₂, partial pressure of oxygen.

10.1136/emermed-2020-209751

Typical Blood Gas – 1 minute

```
Blood Gas Values
                     7.451
                                        7.350 - 7.450
     pH
                      54.5
                                         35.0 - 45.0
                             mmHg
     pCO,
                                         75.0 - 100
                      58.3
                             mmHg
   1 po,
Acid Base Status
                              mmol/L
                      35.6
     cHCO, (P,st)c
                       12.7
                             mmol/L
     cBase(Ecf)c
```


5 Basic Rules – 1 minute ABG

1. How is the patient?

Ask or look...

2. Is the patient hypoxaemic?

Is the patient relatively hypoxaemic?*

*Quick Rule of thumb x the Oxygen % by 5

3rd Basic Rules

Is the patient acidotic or alkalotic?

- pH direction generally telling:

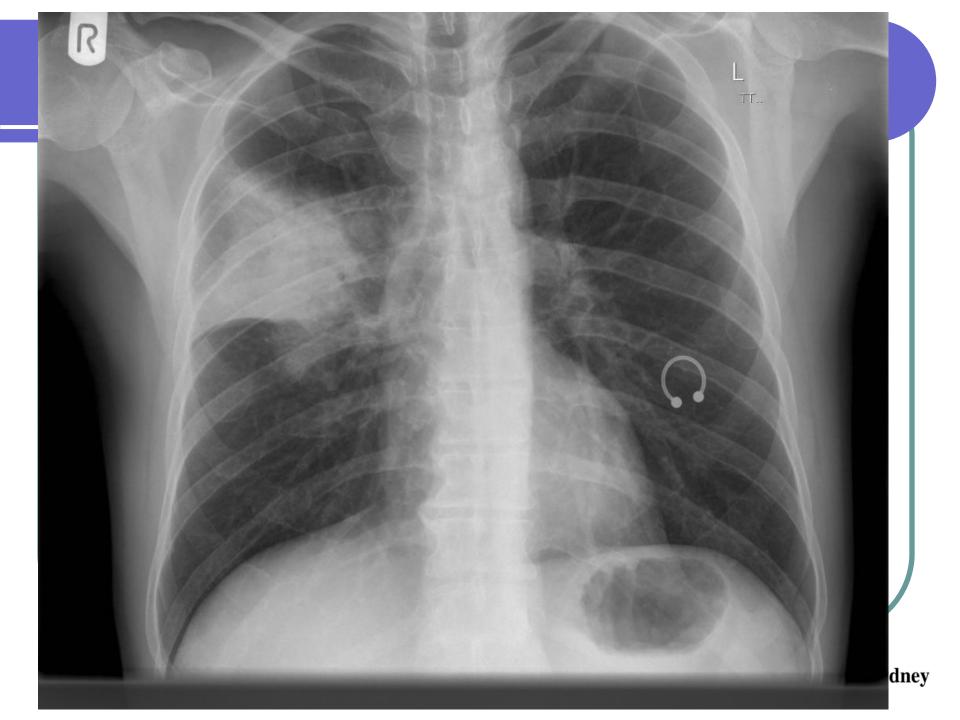
If the pH is normal, there must be

- 2 or more problems (mixed picture)
- no problem
- pregnant patient (compensated respiratory alkalosis)

4th and 5th Basic Rules

4. What has happened to the PaCO₂

Is the abnormality wholly or partly due to a defect in the respiratory system?


5. What has happened to the base excess and/or bicarbonate?

Is the abnormality wholly or partly due to a defect in the metabolic system?

- 48 year old smoker with fever and cough and shortness of breath.
- He has a poor saturations trace and appears unwell
- Blood cultures have been sent and his venous lactate is 5.1mmol
- You wish to determine his O2 and an accurate lactate

(This is his Chest X-ray):

Scenario 1 - ABG

Blood Gas Values						
↓ pH	_ 7.28		[]	7.350	- 7.45	0]
pCO,	55.1	mmHg	1	32.0	- 45.0	1
1 pO2	69.7	mmHg	1	83.0	- 108	1
cHCO, (P)c	23.3	mmol/L				
cBase(Ecf)c	- 1.2	mmol/L				
Oximetry Values						
FCOHb	0.81	%				
FMetHb	1.0%	%				
↓ ctHb	86	g/dL	1	12.0	- 16.0	1
1 30,		%	1	95.0	- 99.0	1
Electrolyte Values						
cK*	4.6	mmol/L	1		-	1
1 cCl		mmol/L	1	98	- 106	1
1 cNa*	137	mmol/L	i	136	- 145	i

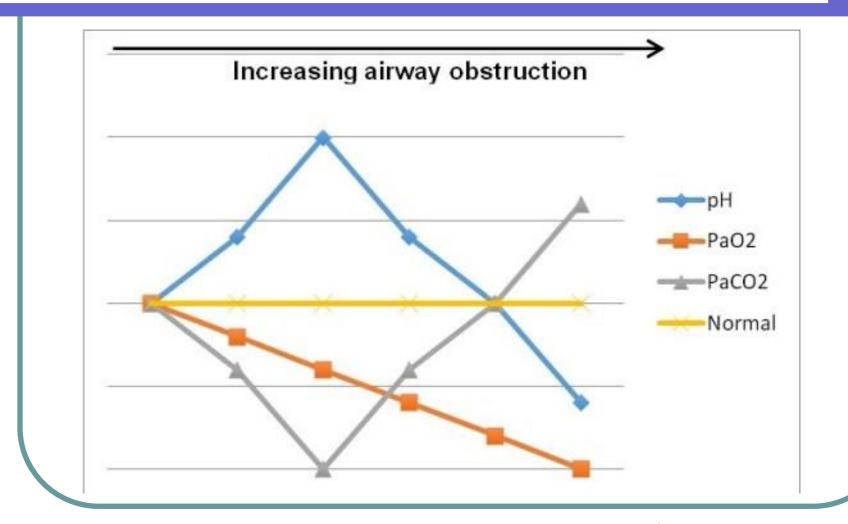
- How do you determine severity of his pneumonia?
- What treatment(s) would you recommend

- 65 year woman with sudden onset right sided chest pain and dyspnoea.
 - What are the clinical risk factors for Pulmonary Embolus (PE)?
 - What is your current diagnostic approach to confirm or exclude PE?
 - What is the role of D dimer, VQ, CTPA,
 CXR, ECG, blood gases in diagnosing PE?

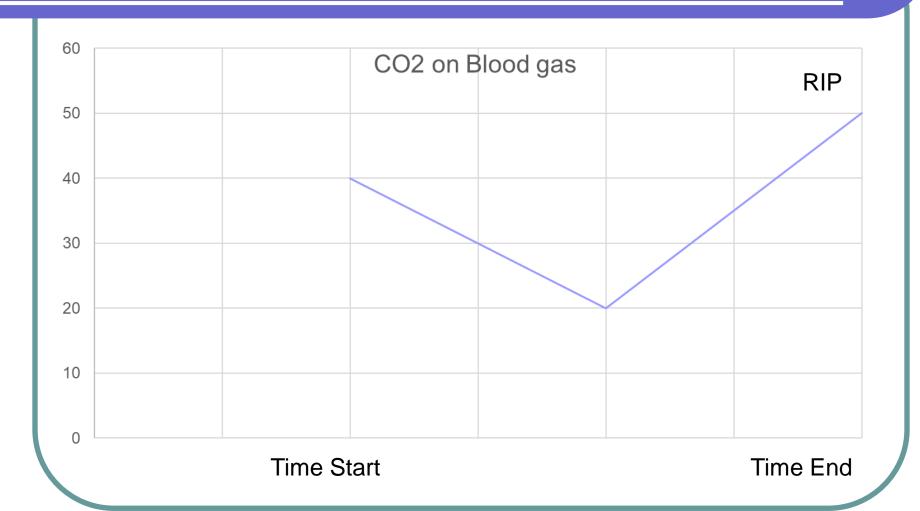
Scenario 2 – Blood Gas

- This is her arterial blood gas (ABG) result on no oxygen (21%):
 - pH 7.51, PO2 49, PCO2 27, HCO3 23, Base Excess -1.9

• How do you interpret this ABG result?


- 19 year old woman with history of asthma presents with dyspnoea?
- Resp Rate 45, HR 140, BP 130/70

- How would you assess the severity of her current asthmatic attack?
- What is the role of a blood gas in Asthma?


Here is her blood gas (venous)

- pH 7.40
- PaCO₂ 42
- PaO₂ 150
- Bicarbonate 23
- B/E -1

CO2 in Asthma

Time v Co2

 74 year old man, life-long smoker, with severe respiratory distress and a saturation of 82%.

This is his Chest X-ray.

 What factors could have exacerbated his chronic airway limitation (CAL)?

How do you manage him initially?

ABG

Blood Gas Values			7.5		-		
↓ pH	7.282		ſ	7.350	9	7.450	1
† pCO ₂	55.1	mmHg	1	35.0		45.0	i
↓ pO₂	69.7	mmHg	j	75.0	-	100	j
Acid Base Status							
cHCO ₃ -(P,st) _C	23.3	mmol/L					
cBase(B)c Electrolyte Values	-1.2	mmol/L	l	-3,0	-	3.0	1
cK ⁺	4.6	mmol/L	ſ	3.4		5.5	1
cNa+	137	mmol/L	Ī	136	-	146	í
↓ cCa²¹	1.08	mmol/L	i	1.15			1
cCa ^{2*} (7.4) _C	1.01	mmol/L	0			N. C. Hard	1
cCl-	100	mmol/L	1	94		107	1
Metabolite Values			Š	5076864			1
† ¢Glu	6.0	mmol/L	1	3.9	-	5.8	1
† cLac	2.7	mmol/L	į	0.5			j

Should we remove the O2

covid-19

Research • Education •

News & Views >

Campaigns ~

lobs •

Practice » Lesson of the Week

Rebound hypoxaemia after administration of oxygen in an acute exacerbation of chronic obstructive pulmonary disease

BMJ 2011 : 342 doi: https://doi.org/10.1136/bmj.d1557 (Published 31 March 2011)

Cite this as: BMI 2011:342:d1557

Article

Related content

Metrics

Responses

Binita Kane, SpR in Respiratory Medicine 1, Peter M Turkington, consultant physician in respiratory medicine 1,

Rebound Hypoxia - described in BMJ

Consider well lady with CAL
 pH 7.40 c
 CO₂ 34
 O₂ 60
 Bicarbonate 24

Develops exacerbation CAL and given 4litres/min NP for days
 pH 7,22
 CO₂ 90
 O₂ 150mmhg
 Bicarbonate 36

Oxygen removed

Oxygen therapy in COPD

• 20 mins after O₂ removed

pH 7.28
CO₂ 82
O₂ 32 YES 32!
Bicarb 37

WHY? CO₂ stores are extensive

Put this in your alveolar gas equation $PAO_2 = FiO_2 (760-47))-pCO_2 /R0.8$ 147- 102 only 45 at best without considering abnormal lungs 24% would give at best 60 but she has a big a/A gradient

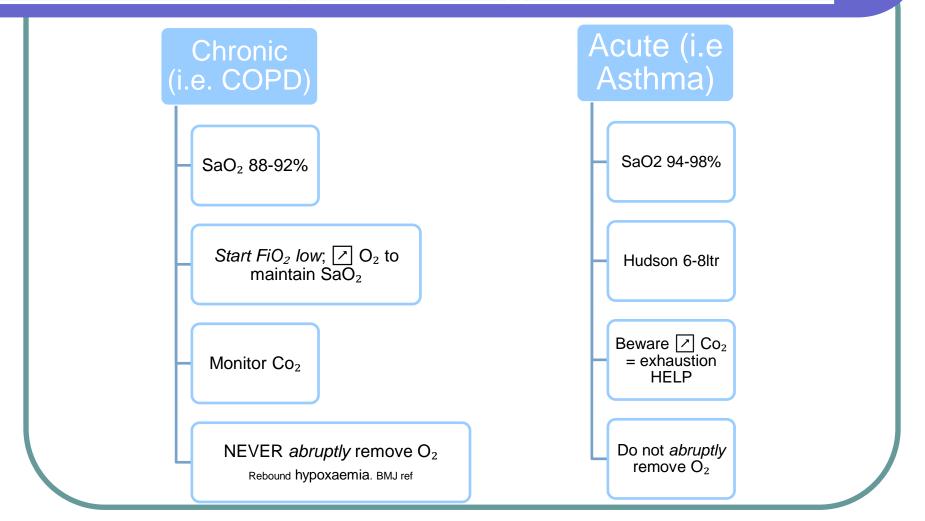
Needed 28% at least to prevent rebound hypoxia

What happened?

- Rebound Why?
 - Body's CO₂ stores are very large
 - Stop the oxygen, pO₂ drops quickly
- •pCO₂ does not, especially if very high – in this case the alveolar oxygen pressure can drop below where it was before O₂ commenced

The Alveolar Gas Equation:

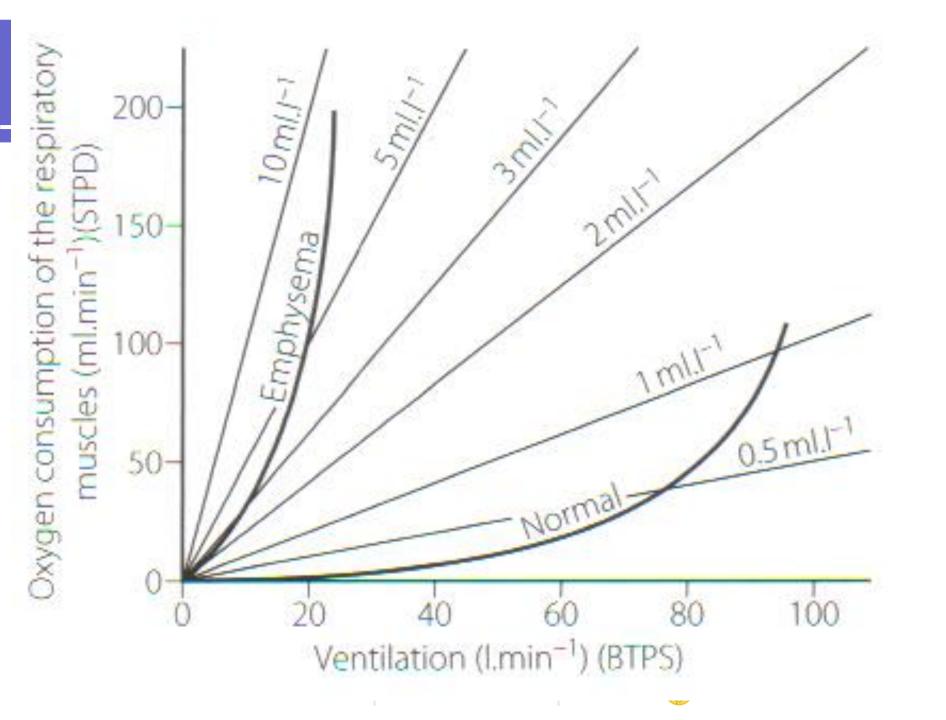
$$P_AO_2 = PiO_2 - \dots$$


0.8

$$PiO_2 = FiO_2 (P_b - P_{H20})$$

Oxygen administration

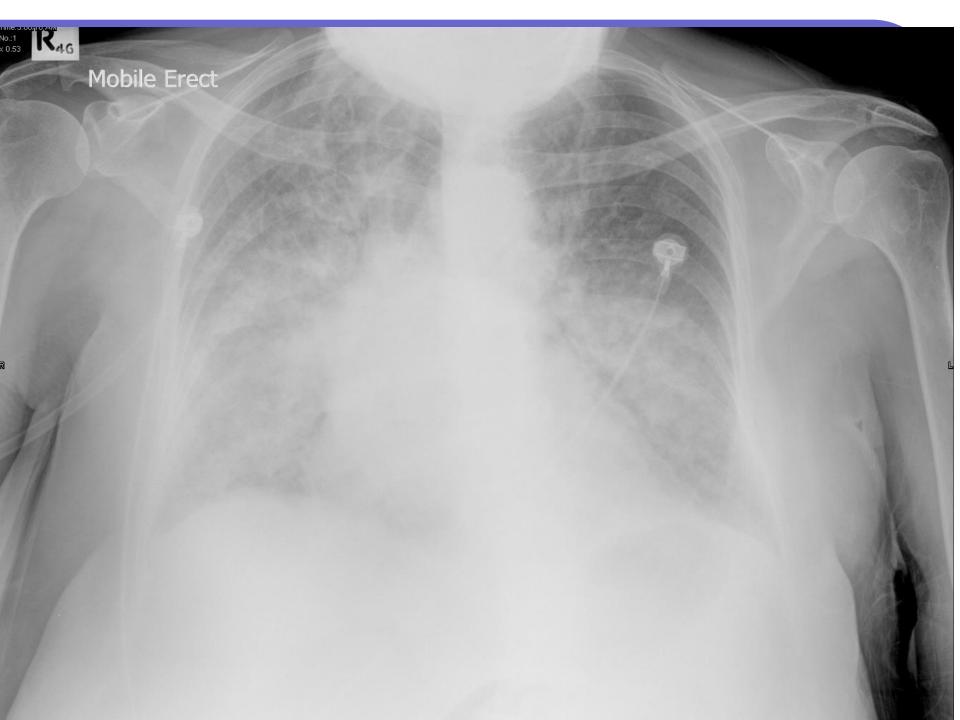
Acute deterioration: hypoxia kills not hypercarbia



Severe COPD

- Tachypnoea
- Marked dyspnoea
- Pursed lip breathing
- Use of accessory muscles at rest
- Acute confusion
- New onset cyanosis
- New onset peripheral oedema
- Marked reduction in ADL's

COPD

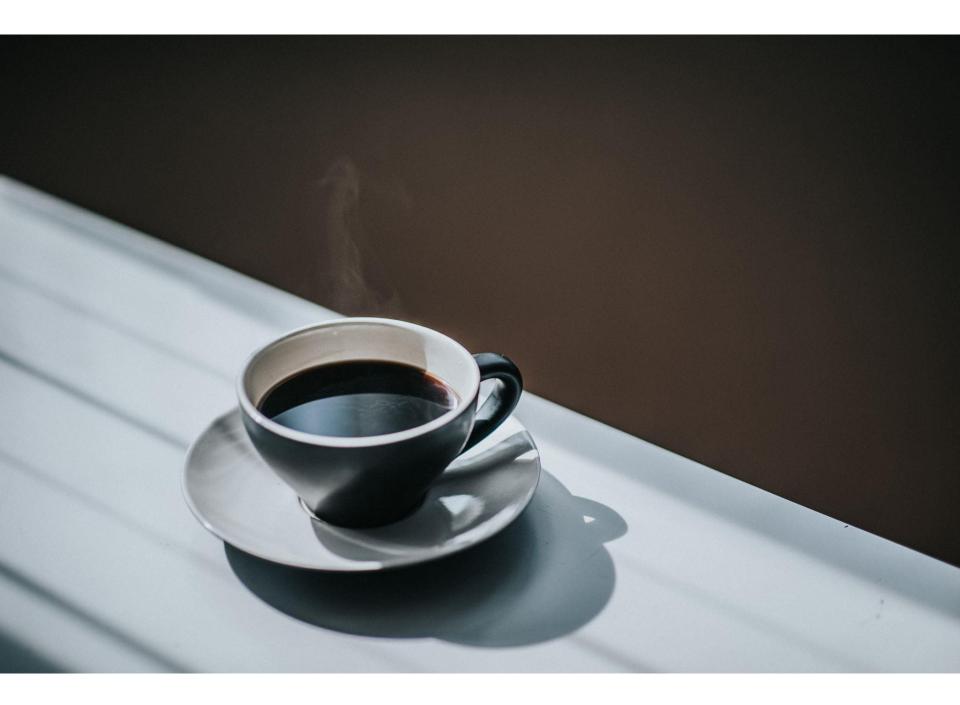

- Up to 25% of patients with a severe unexplained exacerbation of COPD may have a co-existing PE.
 - Tillie-Lebland, Marquette et al, Annals of Internal Medicine 2006

Scenario 6

 67 year old woman in pre planning for dialysis and with severe heart failure is brought in by ambulance at 5am with sudden onset respiratory distress.

This is her Chest X-ray

Scenario 6

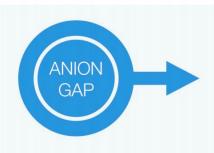

 What are the conflicting issues in managing this patient?

Please interpret their ABG

What is your interpretation

pН	7.31		Reference range (7.35-7.45)
PCO ₂	30	mmHg	(35-45)
PO ₂	104	mmHg	(75-100)
HCO ₃	18.5	mmol/L	(22-33)
BE	-4.8		(-3.0+3.0)
Saturation	99%		(95-98%)
FIO ₂	0.21		
Na ⁺	141	mmol/L	(135-145)
K ⁺	8.4	mmol/L	(3.2-4.5)
Ca ²⁺	1.21	mmol/L	(1.15-1.35
Cl-	113	mmol/L	(100-110)

Advanced Rules


 $PAO_2 = FiO_2(P_B-P_{H2O}) - (PaCO_2/RQ)$

Shortcut:

PAO₂ ≃FiO₂ x 500

P_B is barometric pressure P_{H2O} is pressure due to water vapour RQ is respiratory quotient

Breathing room air at sea level: PAO₂ = 0.21x(760-47) - (40/0.8) = 150-100 =100 mmHg

Rule 1

If you see a metabolic acidosis, you **must** calculate the **anion gap**

 $ANION = [Na]-[HCO_3]-[CI]$

Normal 12 (range 6-15) Albumin correction = $AG + \frac{1}{4}(44 - \text{albumin})$

Rule 2

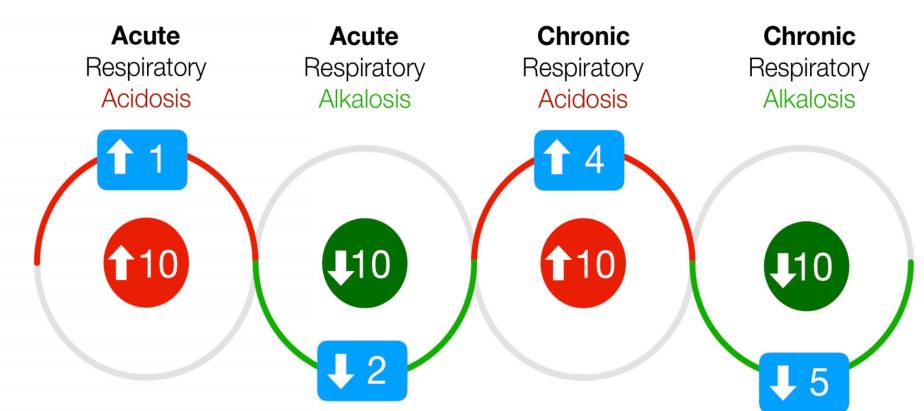
If the anion gap is elevated, you should calculate the **delta ratio**

DELTA = AG - 12 RATIO = 24 - [HCO₃]

<0.8 = combined HAGMA & NAGMA 1-2 = uncomplicated HAGMA >2 = pre-existing metabolic alkalosis

Rule 3

If you see a measured osmolality, you **must** calculate the **osmolar gap**


 $\begin{array}{c} \text{OSMOLAR} \ = \ \text{osmolality - osmolarity} \\ \text{GAP} \end{array}$

osmolality is measured osmolarity is calculated calc osmolarity = 2[Na]+urea+glucose

COMPENSATION RULES

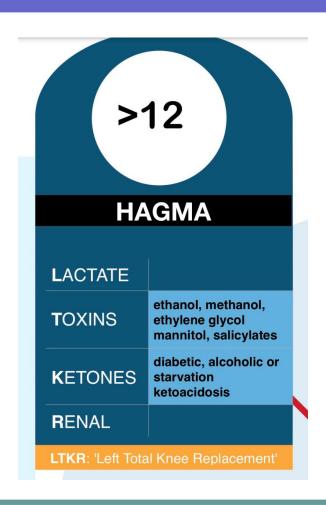
HCO₃- ↑1 mmol for every 10mmHg ↑in CO₂>40

Acute ACidosis

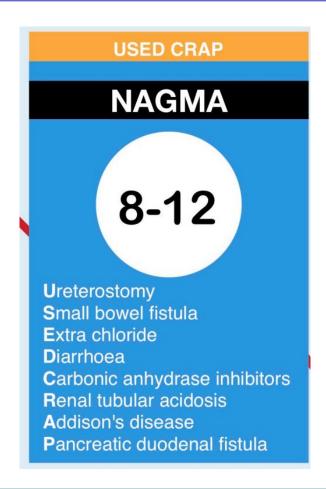
1 for 10

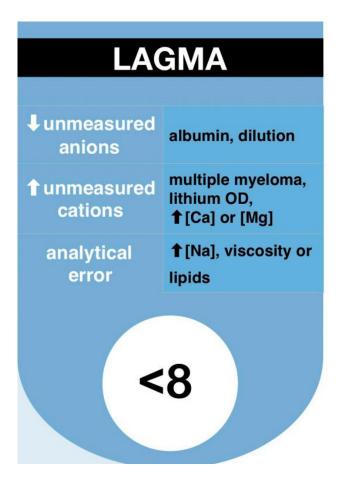
HCO₃- ↓2 mmol for every 10mmHg ↓in CO₂<40

Acute ALkalosis 2 for 10 HCO₃- **↑**4 mmol for every

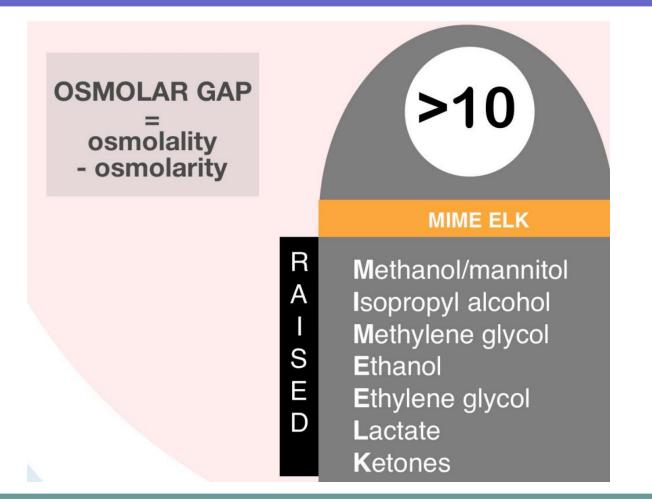

10mmHg **1** in CO₂>40

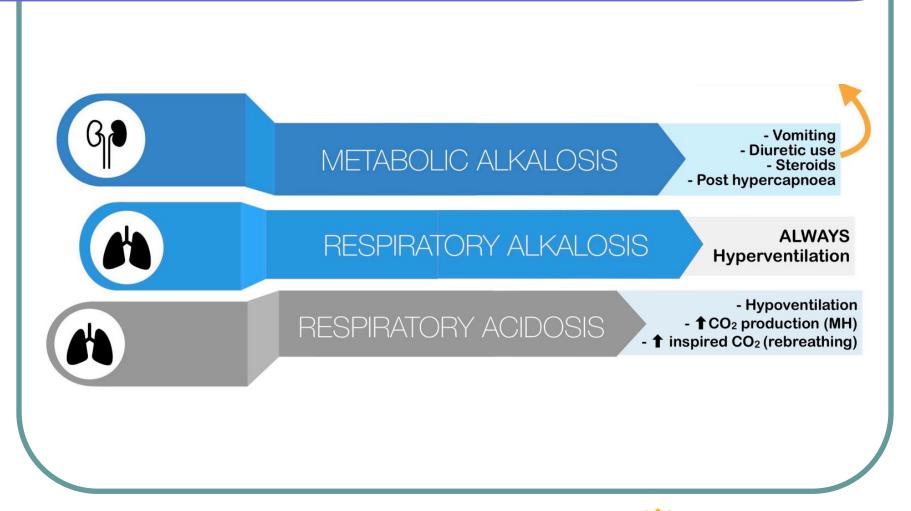
Chronic ACidosis
4 for 10


HCO₃- ↓5 mmol for every


10mmHg \blacksquare in CO₂<40

Chronic ALkalosis
5 for 10





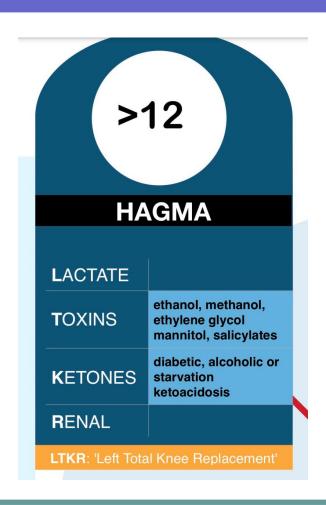
Osmolar Gap

Other Problems

Blood Gas Challenge 1

Serum biochemistry and arterial blood gas

FiO ₂	0.50	
pН	7.05	
pCO ₂	66	mmHg
pO_2	247	mmHg
Bicarbonate	18	mmol/L
Base excess	-14	
O ₂ saturation	99	%
Na ⁺	131	mmol/L
K ⁺	5.0	mmol/L
Cl	92	mmol/L
Urea	15	mmol/L
Creatinine	227	micromol/L
Glucose	50.9	mmol/L


Reference Range

7.35-7.45 35-45 80-95 22-28 -3 - +3

Rule 2

If the anion gap is elevated, you should calculate the **delta ratio**

<0.8 = combined HAGMA & NAGMA 1-2 = uncomplicated HAGMA >2 = pre-existing metabolic alkalosis

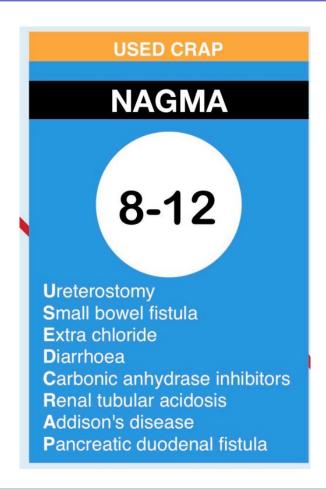
Blood Gas Challenge 2

FiO ₂	0.21		
pН	7.24		7.35-7.45
pCO ₂	92	mmHg	35-45
pO_2	45	mmHg	80-95
Bicarbonate	49	mmol/L	22-28
Base excess	10		-3 - +3
O ₂ saturation	78	%	> 95
Lactate	1.2	mmol/L	< 1.3
Na ⁺	142	mmol/L	134-146
K ⁺	3.8	mmol/L	3.4-5
Cl ⁻	86	mmol/L	98-106
Glucose	11.4	mmol/L	3.5-5.5
Haemoglobin	184	g/L	135–180
Carboxy Hb	7	%	< 6%

Blood Gas Challenge 3

Bedside venous blood gas results included:

			Reference Range
FIO ₂	0.21		
рН	7.25		7.35-7.45
pCO ₂	35	mmHg	35-45
pO ₂	234	mmHg	80-95
HCO ₃	15.0	mmol/L	22-28
Base Excess	-11		-3 to +3
Na ⁺	141	mmol/L	134-146
K ⁺	1.1	mmol/L	3.4-5.0
CI	116	mmol/L	98-106
Glucose	5.4	mmol/L	3.5-4.5

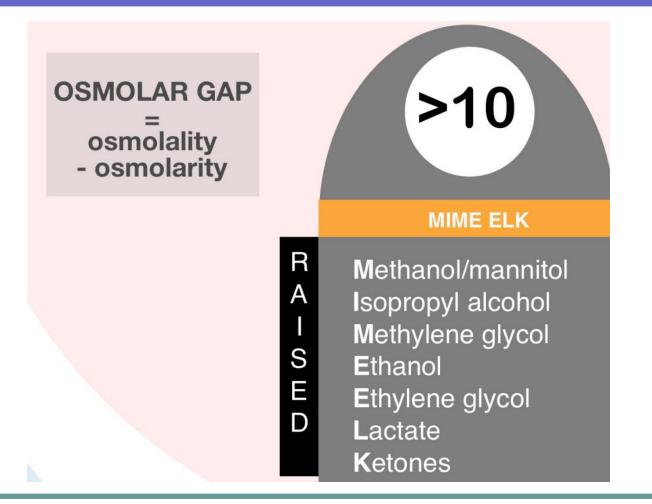

Answers

What is her main acid/base disorder?

Metabolic acidosis: low pH + normal CO2 + normal HCO3 + strongly negative base excess.

What is her anion Gap?

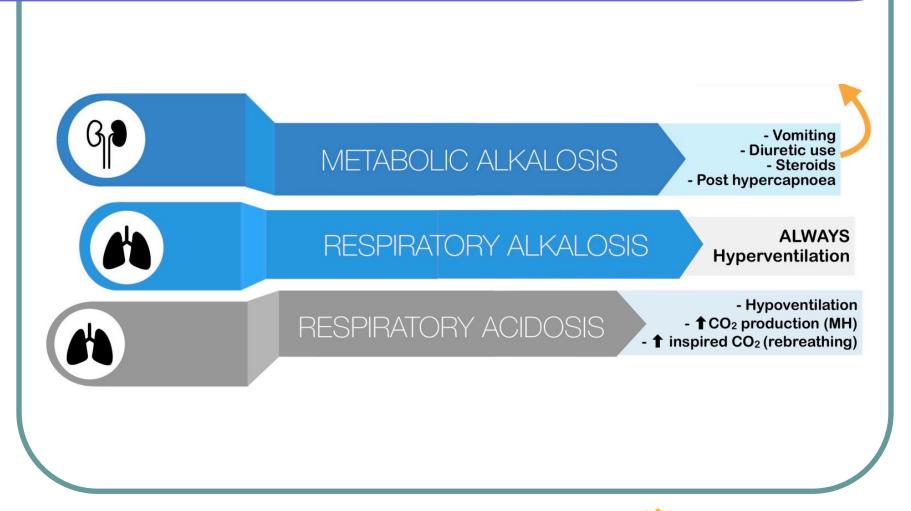
Blood Gas Challenge 4


A 26 year old mechanic is brought in by ambulance after an overdose of an unknown substance. On arrival his vital signs are:

HR 106 BP 80/50 GCS 12 sats 100% on RA RR 34

ABG

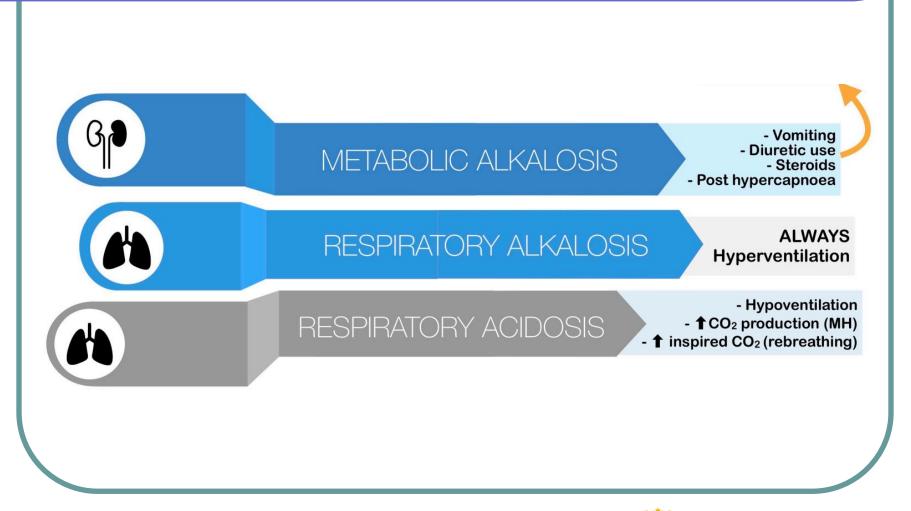
FiO2	0.21		
pH pO ₂ pCO ₂ HCO ₃ - BE	7.15 115 20 8 -16	mmHg mmHg mmol/L	Rule 3 If you see a measured osmolality, you must calculate the osmolar gap
Na K Cl	135 6.5 95	mmol/L mmol/L mmol/L	OSMOLAR = osmolality - osmolarity osmolality is measured osmolarity is calculated
glucose urea lactate	6.2 8.1 5.2	mmol/L mmol/L mmol/L	calc osmolarity = 2[Na]+urea+glucose
measured osmolality	320	mosm/Kg	


Osmolar Gap

Blood Gas Challenge 5

```
Blood Gas Values
   T pH
                    7.451
                                     [ 7.350 - 7.450 ]
   1 pCO,
                     54.5
                            mmHg
                                       35.0 - 45.0
   1 po,
                     58.3
                            mmHg
                                     75.0 - 100
Acid Base Status
    cHCO, "(P,st)c
                     35.6
                            mmol/L
                     12.7
                            mmol/L
    cBase(Ecf)c
Oximetry Values
   1 so,
                     88.5 %
                                       95.0 - 100.0 ]
                                        130 - 180
   1 ctHb
                      99
                           g/L
Electrolyte Values
   1 cK+
                      2.9
                            mmol/L
                                        3.5 - 5.0
                            mmol/L
     cNa+
                     144
                                        136 - 146
   1 cCa21
                            mmol/L
                                     [ 1.15 - 1.30
                     1.14
    cCa2'(7.4)c
                     1.17
                            mmol/L
Metabolite Values
                      5.4
                            mmol/L
    cGlu
                                        0.5 - 2.0
                      1.5
                            mmol/L
    cLac
*emperature Corrected Values
    pH(T)
                    7.451
                    54.5
                           mmHg
    pCO,(T)
```

Other Problems



Blood Gas Challenge 6

Reference	Range
-----------	-------

FIO ₂	0.5		
pH	7.62		(7.35-7.45)
pCO ₂	28.5	mmHg	(35-45)
pO_2	234	mmHg	(80-95)
Bicarbonate	30.0	mmol/L	(22-28)
Base excess	8.3		(-3 - +3)
O ₂ saturation	99.8	%	(> 95)
Lactate	1.1	mmol/L	(< 1.3)
Na ⁺	131	mmol/L	(134-146)
\mathbf{K}^{+}	2.0	mmol/L	(3.4-5)
Cl-	90	mmol/L	(98-106)
Glucose	12.7	mmol/L	(3.5-5.5)

Other Problems

The End.

