Signalling Mechanisms and Drug Action

Signalling Mechanisms

- Five Basic mechanisms:
 - Lipid soluble ligans
 - Ligand related transmembrane enzymes
 - Ligand gated channels
 - G protiens and second messengers
 - Phosphorylation

Lipid Soluble Ligands

- Lipid Soluble Ligands
 - Acts on intracellular receptors
 - e.g. steroids, thyroid hormone
 - Receptor —> stimulates transcription of genes
 - There is a characteristic lag period
 - Effects can persist even after agonist concentrations have decreased to zero

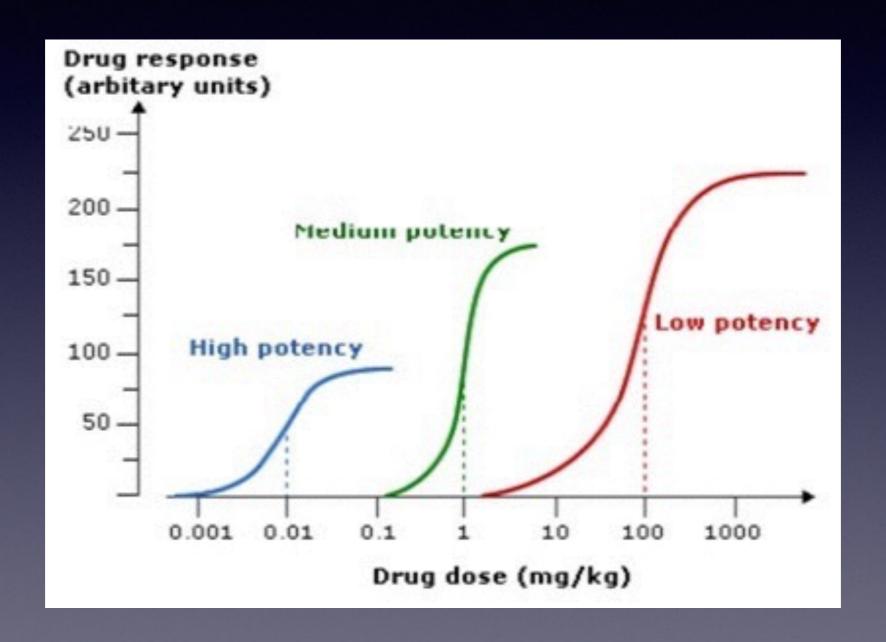
Ligand Regulated Transmembrane Enzymes

- Insulin, EGF
- Receptors have multiple elements
 - Extracellular hormone-binding domain
 - Cytoplasmic enzyme domain
 - These two elements are linked by a hydrophobic segment that crosses lipid membrane
- Mechanism
 - Ligand binds —> Dimerisation of two segments of receptor bring together the tyrosine kinase domains which then become active —> Phosphorylation of downstream proteins
 - RECEPTOR DOWN REGULATION ligand binding induced endocytosis of receptor and therefore reduces cellular response

Ligad Gated Channels

- Many therapeutic agents act by mimicking or blocking the actions of endogenous ligands that regulate the flow of ions into and out of a cell
- e.g. Ach, GABA, Serotonnin

G - protein coupled receptors


- Extracellular ligands which increase the concentration of second messengers such as cyclic aMP, calcium
- Three separate components in the transmembrane signalling system:
 - Extracellular ligand is detected by the cell surface receptor
 - Receptor triggers activation of G protein located not he cytoplasmic face of the membrane
 - Activated G protein changes the activity of an effector element (enzyme or ion channel), which then changes the concentration of the intracellular messenger.

G - protein coupled receptors

- Phosphorylation is a common end point
 - Amplification
 - Flexible regulation

Drug dose and clinical response

- Potency concentration of a drug required to produce 50% of that drugs response.
 - Determined by:
 - Affinity of receptors for drug
 - Efficiency with which drug-receptor interaction is coupled with response
 - Hence a drug can be more potent but less efficacious than another drug.

Efficacy

• Limit of dose response interaction

Quantal Dose Response Curve

- For most drugs the doses required to produce a specific quantal effect in individuals follow a bell curve pattern
- Median effective dose is the dose at which 50% of people exhibit the specified response
- By dividing the median toxic dose and the median effective dose you get a therapeutic index

Variations in Drug Responsiveness

- When responsiveness diminishes rapidly to administration of a drug this is called - TACHYPHYLAXIS
- Alterations in concentration of a drug that reaches a receptor
 - Differences in rate of absorption, distribution, distribution and clearance
- Variation in concentration of endogenous receptor ligand propranolol is more effective in patients with more beta receptors (phaechromocytoma)
- Alteration in number or function of receptor
- Changes in components of response distal to the receptor