HYPOGLYCEMIC AGENTS

Westmead Primary Exam Course

- Secretions released from pancreatic B cells at a low basal rate and a much higher stimulated response to a variety of stimuli - especially glucose.
- Other stimulants include
 - Mannose
 - Certain amino acids
 - Vagal activity
- Hyperglycemia —> increased intracellular ATP levels —> close the ATP dependent K channel —> decreased outward efflux causes depolarisation of the B cells —> opens voltage gated Ca channel —> increased intracellular calcium tigers secretion of insulin

- Metabolism
 - Liver and kidneys are two main organs
 - Liver = 60%
 - Kidney 30 40% of endogenous hormone
 - This ratio is reversed with the administration of exogenous hormone
 - The half life of circulating insulin is 3 5 minutes

- The insulin receptor -
 - Insulin diffuses into tissues and binds to specialised tissue
 - Receptors consist of
 - Alpha extracellular subunit and is the recognition site
 - Beta subunit spans the membrane
 - Contains a tyrosine kinase unit
 - The binding to the alpha subunit activates the receptor and facilitates mutual phosphorylation of the beta subunit
 - Activation of receptor causes
 - GLUT 4 insertion into cell membrane and increased glucose uptake
 - Increase glycogen formation
 - Effects of portein and fat synthesis
 - Cell growth and division

- Effects of insulin supports storage of fat and glucose inside specialised cells
- Liver
 - Reverses catabolic effects of insulin deficiency
 - inhibits glyogenolysis
 - inhibits formation of ketoacids
 - inhibits conversion of amino acids to glucose
 - Anabolic action
 - Promotes glucose storgage
 - Increased triglyceride secretion
- Muscle
 - Increase protein synthesis
 - Increase glycogen synthesis
- Adipose tissue
 - Increase triglyceride storage —> lipoprotein lipase induction

- Rapid acting vs Short acting vs Intermediate acting vs Long acting
 - Rapid clear in appearance, action in one hour
 - e.g. Lispro, aspart, glulisine
 - Short acting clear in appearance, peak in 3 4 hours
 - e.g. Novolin
 - Intermediate turbid with protamine, peak action is 4 8 hours
 - e.g. Humulin N
 - Long acting clear, has a low level of effect for a long period of time up to 6 23 hours
 - e.g. Levemir

- 3 modalities
 - Portable pen injector
 - SC pumps
 - Inhaled insulin? dubuious efficacy and risks associated with administration

Insulin therapy

- Complications of insulin therapy
 - Hypoglycaemia most common complication tachycardia, palpitations, sweating, nausea
 - Immunopathology of insulin therapy insulin allergy and resistance
 - Lipodystrophy at injection sites

Oral Hypo glycemic Therapy

- Sulphonylureas
 - Increase insulin release from pancreas binds K channels in B cells —> causes cellular depolarisation —> Ca influx —> insulin release
 - Reduce serum glucagon occurs over long term
 - First generation agents more adverse effects and drug interactions
 - Second generation agents Glipizide much better tolerated
 - Tachyphylaxis and secondary failure can occur

- Biguanides Metformin is the prototype
 - MOA: remains elusive does not depend on functioning B cells
 - Hypoglycemia does not happen a euglycemic agent
 - Pharmacokinetics
 - A: Well absorbed
 - D: Not bound to plasma protiens, widely distributed
 - M: Not metabolised can impair the metabolism of lactic acid, therefore in renal failure they accumulate and further inhibit the hepatic metabolism of lactic acid, causing a lactic acidosis
 - E: Excreted via kidney as active compound

- Metformin
 - Clinical use: Hyperglycemia due to insulin resistance
 - Can also prevent new onset of T2DM in middle aged obese people with IGT or fasting hyperglycaemia
 - Toxicity -
 - GIT
 - Can have mal absorption of vitamin B 12
 - Contraindicated in patients with alcoholism, renal failure, hepatic disease

Other OHG

- Acarbose Reduce GIT conversion of starch disaccharides to monosaccharides and therefore reduce post prandial hyperglycaemia
- Rosiglitazone Reduce peripheral insulin resistance via the regulation of gene expression
 - Can cause weight gain, fluid retention,
 - Contrainidcated in CCF and hepatic disease
- Sitagliptin blocks degradation of GLP 1

Glucagon

- Chemistry and metabolism synthesised by the A cells of the pancreas
- Extensively degraded in the liver and kidney as well as in plasma
- Because of its rapid inactivation in plasma special storage methods are required to prolong activity

Glucagon

- Pharmacological effects
 - Metabolic effects binds to specific receptors on liver cells and facilitates catabolism of stored glycogen and increases gluconeogenesis and ketogenesis
 - Cardiac effects potent chronotropic and inotropic effects - very similar effects to beta adrenoreceptors without requiring functioning beta receptors
- Clinical use hypoglycaemia