RENAL PHYSIOLOGY PART 3

RAAS, ANP, EPO systems

RAAS

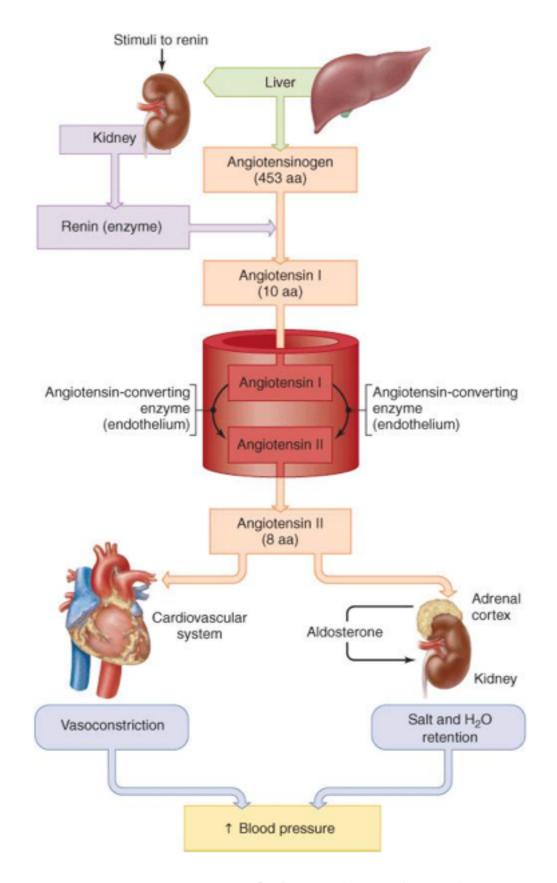


FIGURE 38–5 Summary of the renin–angiotensin system and the stimulation of aldosterone secretion by angiotensin II. The plasma concentration of renin is the rate-limiting step in the renin–angiotensin system; therefore, it is the major determinant of plasma angiotensin II concentration.

- ➤ Synthesis of renin/angiotensin
 - > Pre renin synthesised in the kidney and other tissues such as the ovaries
 - ➤ Activated to renin in the kidneys (juxtaglomerular cells)
 - ➤ Angiotensin made from ACE in endothelium of the pulmonary circulation
- > Actions
 - ➤ Renin —> converts angiotensinogen to angiotensin 1
 - ➤ Angiotensin 2 —> causes vasoconstriction (increases SBP and DBP)
 - ➤ Aldosterone secretion
 - ➤ Vasopressin secretion
 - ➤ Causes thirst
 - ➤ Facilitates release of noradrenaline
 - ➤ Causes contraction of mesangial cells —> reduce GFR, increases Na reapsorption directly in renal tubules
 - ➤ Decreases sensitivity of central baro receptors
 - ➤ Increases ACTH secretion

REGULATION OF RENIN SECRETION

- Secreted by pericytes in the vicinity of the afferent arterioles and similar micro vessels of the kidney from specialised cells of the juxtaglomerular apparatus the juxtaglomerular cells
- ➤ This occurs in response to 3 stimuli
 - ➤ A decrease in arterial blood pressure (that could be related to a decrease in blood volume
 - ➤ A decrease in sodium load delivered to the distal tubule this load is measured by the macula densa of the juxtaglomerular apparatus
 - Sympathetic nervous system which also controls blood pressure

THE MACULA DENSE

- ➤ Closely packed specialised cells lining the wall of the thick ascending limb of the loop of Henle at the transition to the distal convoluted tubule
- ➤ These cells are sensitive to the concentration of NaCl in the distal convoluted tubule
- ➤ A decrease in NaCl initiates a signal from the macula densa which has two effects
 - ➤ Decreases resistance to blood flow from the afferent arterioles, which raises glomerular hydrostatic pressure and helps return GFR towards normal
 - ➤ Increases renin release

REGULATION OF RENIN SECRETION

- ➤ Stimulants to secretion
 - ➤ Renal nerves firing
 - ➤ Increased catecholamines
 - ➤ Prostaglandins
 - ➤ Hypotension
 - ➤ Na wasting
- ➤ Inhibition to secretion
 - ➤ Angiotensin 2
 - ➤ Vasopressin
 - ➤ Increased Na and Cl absorption from the macula densa
 - ➤ Increased afferent arteriolar pressure
 - ➤ Inhibition of prostaglandins by indomethacin
 - ➤ Inhibition of catecholamines by beta blockers

ERYTHROPOIETIN

- Synthesised by kidneys to stimulate RBC production
 - angiogenesis
 - > vasoconstriction
 - > smooth muscle proliferation
- > Stimulated by hypoxia and anaemia primarily
- ➤ Manufactured in the peritubular cells cells of the renal cortex

ANP

- ➤ Secreted in response to expansion of ECF and increase NaCl intake
- ➤ Causes natriuresis
- ➤ Made in heart
- > Actions
 - ➤ Dilate afferent arterioles and relax mesangial cells to increase GFR
 - ➤ Inhibit renal tubular absorption of Na
 - ➤ Relax vascular smooth muscle and increase capillary permeability
 - ➤ Inhibit renin secretion
 - ➤ Inhibit the vasopressor effects of angiotensin 2 and catecholamines
- ➤ Factors effecting secretion
 - ➤ Increased ECF atrial and ventricular stretch
 - ➤ Administraiton of thiorphan
 - ➤ Immersion in water up to neck