
Westmead Primary Exams

Siezures

Benzodiazepines

- Diazepam/Midazolam
 - MOA GABA agonist, potentiates GABA-ergic inhibition in the CNS causing membrane hyperpolarisation
 - All benzodiazepines have hepatic metabolism and are excreted in the urine
 - Diazepam: Highly effective in stopping continuous seizure activity tolerance develops if given long term
 - Pharmacokinetics:
 - A: well absorbed orally over 90% bioavailability
 - D: Highly protein bound
 - M: metabolised into multiple active metabolites
 - E: Half life is 2 days, excreted in the urine

Clonazepam

- Long acting, effective against absence seizures and some myoclonic seizures
- Potent sedative
- No active metabolites but extensively metabolised by 1st pass
- PO bioavailability around 80%
- Half life 20 -50 hours

Generic name	Trade name	Dose equival	Onset of action *	Elimin. t 1/2 hr	Starting dose (mg)	Maximum dose mg/d	Metabolism Excretion *
Long (25-100h)		i.					
Chlordiazepoxide	Librium	10	T	6-20	25 bid-tid	300	К
Clonazepam	Klonopin	0.25	1	18-50	0.25-0.5 bid	20	LK
Clorazepate	Tranxene	7.5	R	30-100	7.5-15 qhs	60	K
Diazepam	Valium	5	R	30-100	2.5-5	40	К
Flurazepam	Dalmane	5	R-I	50-160	15-30 qhs	30	K
Medium (10-15h)						100	
Lorazepam	Ativan	1	L	10-20	0.5 tid	10	К
Estazolam	ProSom	0.33	1	10-24	0.5-1 qhs	3	К
Temazepam	Restoril	5	1	8-20	15-30 qhs	30	К
Short (<12h)				25000			
Alprazolam	Xanax	0.5	1	6-20	0.25 tid	10	К
Midazolam	Versed	1.25-1.7	T	2-3	0.07/kg	5	L
Oxazepam	Serax	15	1-S	8-12	10-15 tid	120	К
Triazolam	Halcion	0.1	1	1.5-5	0.125 qhs	0.5	К

Phenytoin

- Pharmacodynamics
 - Alters Na (blocks Na channel), K, Ca conductance
 - Therefore interferes with membrane potentials, concentration and release of neurotransmitters
 - Blocks high frequency firing potentials
 - Used in partial and generalised tonic clonic siezures
 - Earliest non sedative anti-epileptic

Pharmacokinetics

- A: Complete gastro absorption, peak plasma concentration in 3 12 hours
 - Unreliable absoprtion with IM injection so the precursor fosphenytoin is used
 - 90% bound to plasma proteins
- D: Accumulates in multiple organ tissues brain, fat, liver, muscle
- M: Metabolised by liver into inactive metabolites half life is 12 36 hours, longer in high levels takes 4 6 weeks for blood levels to stabilise
 - Theraputic range is 10 20mcg/ml
- E: Excreted in urine a small proportion is excreted unchanged in urine
 - Dose dependent elimination (variable order kinetics)
 - At low concentrations it follows first order kinetics, which causes saturation of hepatic enzymes leading to...
 - Zero order kinetics at higher levels within the therapeutic dosing range so even a small rise in dose after this can increase plasma concentrations by large amounts and rapidly lead to toxicity

Toxicity

- Nystagmus early
- Loss of smooth extraoccular pursuit movements
- Diplopia
- Ataxia
- Sedation
- Gingival hyperplasia
- Hirsutisim
- Coarsening of facial features
- Peripheral neuropathy diminished deep tendon reflexes
- Osteomalacia
- Rash/fever/agranulocytosis

Interactions

- Protein binding
 - Other protein bound drugs can displace phenytoin
 - Hypoalbuminemia
 - Renal disease can decrease plasma protein binding and result in elevated free drug concentrations
- Induces microsomal enzymes in liver —> warfarin

Carbemazepine

- Tricyclic anti-epiletic effective also in Bipolar depression, non sedative
 - Can also be used in trigemminal neuralgia and mania
- Pharmacodynamics
 - Blocks Na channels and inhibits high frequency repetitive firing neurones
 - Acts presynaptically to prevent synaptic transmission and neurotransmitter release

Pharmacokinetics

- A variable rate of absorption, but complete, food slows absorption
- D peak levels occur in 6 8 hours, distribution is slow, Vd 1L/kg
 - ▼ 70% bound to plasma protein doesn't displace other drugs from the proteins
- M low systemic clearance at start
 - half life 36 hours at start
 - 8 12 hours when on continuous therapy
 - induces microsomal enzymes of the liver
 - once completely metabolised it has one metabolite with anticonvulsant therapy
 - theraputic trough level 4 8 mcg/mL

Interactions

- Due to enzyme induction
- Increases metabolism of phenytoin, ethosuxamide, valproate, clonazepam
 - These drugs can also induce enzymes and cause carbamazepine to have lower concentrations

Toxicity

- Diplopia, ataxia
- Gl upset
- Unsteadiness
- Drowsy at high doses
- Idiosyncratic blood dyscrasia
- Rash

Sodium valproate

- Pharmacodynamics
 - Blocks sustained high frequency firing neurones
 - Affects sodium channel current used in partial seizure prevention
 - Also has an element of NMDA blockade
 - Increased GABA levels unclear mechanism
 - Effective in tonic clonic seizures
 - Also effective in absence seizures
 - Can also be used in migraine prophylaxis

Pharmacokinetics

- A well absorbed, bioavailibility is > 80%
- D Volume of distribution is limited to extracellular water 0.15L/kg
- M Slow and dose dependent clearance
 - half life varies from 9 18 hours
- E 20% excreted as a direct conjugate of valproate

Drug interaction

- Displaces phenytoin from plasma proteins
- Inhibits metabolism of phenytoin, carbamazepine, phenobarbital
- Decreases clearance of lamotragine
- Toxicity
 - Most common N/V, abdominal pain, heart burn
 - Sedation
 - Tremor and weight gain, hair loss
 - Idiosyncratic hepatotoxicity especially in toddlers and so needs LFT monitoring
 - Teratogenicity can cause spinabifida

Phenobarbitone

- Pharmcodynamics
 - Enhances phasic GABA a receptor responses and reduces excitatory synaptic responses
- Uses generalised tonic clonic seizures, partial and myoclonic seizures
- Pharmacokinetics nearly complete absorption, NOT significantly plasma protein bound
 - peak concentrations 0.5 4 hours
 - no active metabolites
 - half life varies form 75 125 hours
- Toxicity
 - sedation, ataxia, hyperactivity in children

Lamotrigine

- Prolongs inactivation of Na channels
- Acts of presynaptic Ca channels and decreases glutamate release
- No significiant protein binding
- Half life 25 35 hours
- No active metabolites
- Used in generalised, partial and absence seizures