

Physiology lecture 11

external effects on the circulatory system

The effects of gravity

- * In the standing position MAP at feet is 180 200mmHg, venous pressure is 90 mmHg
- * Arterial pressure in the head is 60 75mmHg and the venous pressure is 0
- * If an individual does not move in the upright position 300 500mL of blood would pool in the venous circulation SV decreases, cerebral ischemia develops and LOC

The effects of gravity

- * Major compensations on assuming upright posture
 - * Triggered by a drop in BP in the carotid sinus and aortic arch
 - * Baro-receptor —> HR increases —> increased CO
 - * Relatively little vasoconstriction peripherally but higher circulation levels of renin and aldostrone
 - * Arterioles constrict

Standing and the cerebral circulation

- * Arterial pressure drops 20 40 mmHg
- * JVP also drops which reduces venous pressure and reduces ICP
- * This decreases overall CPP which increases the partial pressure of CO2 and decreases PO2 and the pH in the brain tissue
- * This actively dilates the cerebral vessels
- * Because of this blood flow only declines about 20%

Fainting and gravity

- * In a way it is a homeostatic mechanism falling to horizontal position restores VR, CO, and CPP
- * The effects of gravity are also inversely proportional to our blood volume

Exercise and the circulation

- * Muscle blood flow
 - * Blood flow at rest is low (2 4ml/100g/min)
 - * When a muscle contracts it compresses the vessels in it if it develops more than 10% of maximal tension
 - * When it develops more than 70% of maximal tension then blood flow stops
 - * Puring contractions flow is increases about 30 fold
 - * Local mechanisms are the dominant mechanisms in mediating this large increase in blood flow

Exercise and the circulation

* Muscle blood flow

- * Fall in 02, Rise in C02, rise in K and metabolites and an increased temperature all mediate this rise in blood flow
- * Pilation of arterioles and pre capillary sphincters opens up many more capillaries and decreases diffusion distance
- * Pilation also increases cross sectional area and therefore the velocity of flow also decreases
- * Pecreased pH and increased temperature cause the Hb O2 curve to shift to the right and increase the dissociation from blood
- * Concentrations of 2-3 DPG increases and this further decreases the affinity for 02

Effects of exercise

- * Increases HR, SV, SBP and MAP
 - * Venoconstriction —> increases pre load
 - * Increased action of muscle pump —> increased pre load
 - * Increased resp rate —> Increased thoracic pump, increased venous return
 - * Blood flow = pressure difference/resistance
 - * so during exercise SBP increases, increasing P difference and therefore increasing blood flow
 - * Adrenaline (sympathetic tone) + lactic acid (vasoactive metabolite) —> increased HR and skeletal vasodilation and constriction of non vital organs
 - * Skeletal muscle increases from 20% at rest to 80 85% during exercise

Some important mumbers...

- * SV rises during exercise up until 40% of VO2 max, rising from 80 120ml/beat
- * HR increases until VO2 max is reached, from 70 -> 200bpm
- * Cardiac output increases until VO2 max is reached, rising from approximately 5L/min to 25 30 L/min
- * The AV oxygen extraction rises from approximately 4ml of 02 per 100ml of blood at rest to 18ml of 0xygen per 100ml of blood
- * V02 in the average person is 37 48 ml/kg/min
 - * Cardiac output is a major determinant of VO2
 - * Peclines with HR as age

SHOCK

- * PEFINITION: Inadequate tissue perfusion with relatively or absolutely inadequate cardiac output
- * 4 distinct pathophysiologies
 - * Amount of fluid in vascular system is insufficient
 - * Hypovolemic shock Hemorrhage, trauma, burns, vomitting/diarrhoea
 - * Relatively inadequate amount of fluid
 - * Pistributive shock anaphylaxis, sepsis
 - * Can be due to inadequate pumping action of the heart
 - * Cardiogenic shock AMI, CCF, Arrythmia
 - * Inadequate cardiac output due to obstruction
 - * Obstructive shock PE, Tamponade, Tension PTx
 - * Neurogenic shock

Shock

- * Stages of shock
 - * Compensated
 - * Tachycardia
 - * RAAS system activated -> Na and H20 retention ->
 - * Vasopressin secreted —> thirst
 - * Neurogenic vasoconstriction
 - * Progressive shock
 - * When the initial CV insult is so large the normal compensatory mechanisms cannot cope —> either iatrogenic support or desent into vicious cycle of decreased CO and BP —> decreased myocardial and cerebral perfusion —> decreased contractility and neurological BP control —> vasodilation and venous pooling, hypoxia and acidosis eating to deem and clotting and decreased VR —> decreased CO
 - * Refractory shock