Diuretics

Diuretics - Renal tubule transport mechanisms

• Image: renal tubules

Summary of physiology

- Proximal tubule NaHCO3, NaCl, glucose, amino acids, and other organic solutes are reabsorbed via specific transport mechanisms in the early proximal tubule
- K is absorbed via the paracellular route
- · Water is absorbed passively
- Approximately 65% of total Na ions, 65% of potassium and 60% of water is reabsorbed - virtually all filtered glucose and amino acids are reabsorbed in the PCT

Bicarbonate, the proximal tubule and CA inhibitors

- Allows sodium to enter the cell (from the lumen) in exchange for a proton in the cell
- Na is extruded from the cell into the interstitium by Na/K ATPase
- H+ in the lime combines with bicarbonate to form carbonic acid with dehydrates into CO2 and H2O by carbonic anhydrase
- CO2 re enters cell where it is rapidly rehydrated to H2CO3 by intracellular CA
- There is parallel Cl/base exchange resulting in net NaCl reabsorption

Carbonic anhydrase inhibitor

- Predominant location of enzyme is in PCT where is catalyses the dehydration of H2CO3
- By blocking carbonic anhydrase —> decreases NaHCO3 absorption —> causes diuresis
- Acetazolamide is the prototype
- Pharmacokinetics
 - ◆ A: well absorbed
 - D: Low Vd, increase in urine pH apparent within 30 minutes
 - M:
 - E: Secretion into the proximate tubule S2 segment, dose reduction in renal failure

- Pharmacodynamics
 - depresses HCO3 in the PCT
 - some HCO3 can still be absorbed via other mechanisms
 - HCO3 depletion leads to enhanced NaCl reabsorption by the remainder of the nephron, the diuretic efficacy
 of acetazolamide decreases with use over several days
- Clinical idications
 - Glaucoma decreases aqueous humer formation decreases IOP, can be used topically (brinzolamide)
 - Urinary alkalisations
 - Acute mountain sickness weakness, dizziness, insomnia, headache can increase ventilation and decrease symptoms of acute mountain sickness
- Toxicity
 - Hypercholremic acidosis
 - Renal stones
 - Contraindicated in hepatic cirrhosis (can precipitate hepatic encpahlopathy)

Loop of Henle

- PCT empties into the thin descending limb of Henle's loop
- Water extracted from the descending limb of this loop by osmotic forces found in the hypertonic medullary interstitium
- Thin ascending limb is relatively water impermeable
- Thick ascending limb actively reabsorbs Nacl from the lumen via Na/K/2Cl co transporter
 - Responsible for 25% of filtered Na
 - Nearly impermeable to water
 - Therefore dilutes tubular fluid
 - Back diffusion of K causes a lumen +ve electrical potential and that drives Ca and Mg reabsorption too

Loop diuretics

- Pharmacokinetics
 - A: Rapid
 - D: Low Vd
 - M: duration of action is usually 2 3 hours, half life depends on renal function
 - E: Eliminated by glomerular filtration and tubular secretion
- Pharmacodynamics
 - Inhibit Na/K/2Cl co transporter in the thick ascending limb of Henle's loop
 - Reduces reabsorption of NaCl and also diminish the lumen positive potential that comes from K recycling - hence increase Mg and Ca excretion
 - Induce synthesis of renal prostaglandins

Loop diuretics

- Most important indications
 - APO
 - Other oedematous conditions
 - Acute hypercalcemia
 - Hyperkalemia
- Toxicity
 - Hypokalemic metabolic alkalosis inhibiting salt reabsoption in the TAL thus increasig delivery to the collecting duct
 - Leads to secretion of K and H by the duct
 - Ototoxicity reversible
 - Hyperuricemia can precipitate gout
 - Hypo mag.
 - Hyponatremia

Distal convoluted tubule

- Only 10% of filtered NaCl is reabsorbed in the DCT and this segment is relatively impermeable to water
- This further dilutes the tubular fluid
- Mechanism of NaCl transport is via an electrically neutral thiazide sensitive co transporter

Thiazide diuretics

- Inhibit NaCl transport predominantly in the DCT
- Chemistry and pharmacokinetics
 - A: well absorbed orally
 - D: Low Vd
 - M: Difference exist
 - Chlorthiazide the parent group is not very lipid soluble and needs to be given in relatively high doses
 - Chlorthialidone slowly absorbed and has a longer duration of action
 - Indapamide is excreted primary in the biliary system, enough of the active form is cleared by the kidney to exert its diuretic effect in the DCT
 - All of the thiazides are secreted by the organic acid secretory system in the proximal tubule and compete with uric acid for secretion by this system hyperuricemia

Thiazide diuretics

- Pharmacodynamics
 - Thiazides inhibit NaCl reabsorption from the luminal side of epithelial cells in the DCT by blocking the Na/Cl transporter
 - Actually enhance Ca reabsorption
 - Net volume depletion leads to increase Na reabsorption in the proximal tubule and therefore passive Ca reabsorption
 - Lower Na intracellularly in DCT enhances Na/Ca exchange in the basolateral membrane and increases overall reabsorption
- * Clinical indications: HTN, CHF, Nephrolithiasis due to idiopathic calciuria
- Toxicity: Hypokalemic metabolic alkalosis
 - Impaired carbohydrate tolerance due to impaired pancreatic release of insulin
 - Hyperlipidemia
 - Hyponatremía

Collecting tubule

- ◆ 2-5% of Na reabsorption it is the final site of Na reabsorption
- Mineralocorticoids act here
- Two cell types; principle and intercalated cells
 - Principle cells: Major sites of Na, K and water transport
 - Intercalated cells: primary sites of H+ secretion
 - 10 50mV lumen -ve electrical potential develops drives chloride back into the blood via paracellular pathway and draws K out of cells
 - Diuretics that act upstream to this site will increase Na delivery to this site and will increase K secretion
- Reabsoprtion of Na via the epithelial Na channel and its coupled secretion of K is regulated by aldosterone (steroid hormone)
- ADH (vasopressin) controls the permeability of this segment to water by regulating the insertion of pre-formed water channels (Aquaporins) into the apical cell membrane
 - In the absence of ADH the collecting tubule is impermeable to water and dilute urine is produced

K sparing diuretics

- Spironolactone is a synthetic steroid competitive antagonist to aldosterone
- Substantial inactivation in the liver
- Slow onset of action
- Pharmacodynamics:
 - Decrease Na reabsorption in the collecting tubules and ducts
 - Similar effects on H+ in the CCT —> hence can cause a metabolic acidosis
- Toxicity:
 - hyperkalemía
 - hypercholremic metabolic acidosis
 - Gyneacomastía
 - ARF
- Contraindications oral K administration, CRF

Agents that alter water excretion

- Osmotic diuretics
 - Proximal tubule and descending loop of Henle are permeable to water any osmotically active agent is filtered by the glomerulus and not absorbed causes water to be retained
 - e.g. mannitol
- Pharmacokinetics:
 - A: Poor oral and so given parenterally
 - D: Low Vd
 - M: not metabolised
 - E: really excreted

Pharmacodynamics

- Major effect in proximal tubule and DLH
- Also oppose the action of ADH in the collecting tubule
- Urine volume increases decreases Na and H20 absorption
- Clinical uses:
 - Increase urine volume in rhabdo and homeless to clear pigment loads
 - ◆ Reduction of ICP
- Toxicity:
 - Volume expansion
 - Dehydration, hyperkalemia